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Introduction

We solve the problem of Unsupervised Domain Adaptation to highly corrupted,
real world nuisance-ridden (weather, shape, texture, context, 3D pose, etc.) and
partially occluded image domains using robust object part representations.

For each object y we learn a generative model P(F’|y) for the feature vectors F'. This
model is formulated as a mixture model P(F'|y) = Zm P(F'|y, m) where the mixture

variable m roughly corresponds to the viewpoint of the object. The conditional
distributions P(F'|y, m) for the features are factorizable in terms of position so that - Te—
P(F|y,m) = Hae 5 P(f,|y,m), where a € & specifies the position in the image. = = = =

Cosine '

b " Similarity , ,

Adaptatlon by Components

0.0

These distributions P(f, |y, m) are specified in terms of von Mises-Fisher (vMF)
dictionaries with parameters A = {0, 1, } and by spatial coefficients with parameters

= {a}'}

P(F‘y) ZP(F\y,m) ZHPa(fa‘yam)P(m) ® Source vMF
We use the following generative e A Transitional vVMF
probability distribution for the neural Pa(fa\yam)zpa(fa‘A’A)Zzazik P(falok, pr), Source VMF OOD Data
features I conditioned on an object y: r - « dictionary o The cosine similarity between source A° & transitional VMF dictionary AZ vectors
P(flok, pr) = e“kFk A =1, [wl] = 1, ' Adaptation (represented as circlgs and triangles) Iy th_is Conceptuql vMF dictionary feature space is
Z(ok) ':> represented by the line connecting the circles and triangles. Image patches from the
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source and target domains roughly corresponding to these vMF dictionary vectors are

Method

vMF dictionary shown, confirming that some similar image parts are represented by similar vMF
Source Transitional | \ dictionary vectors in both domains irrespective of the nuisance factor in the target domain.
D LRSI aec VMF Kernels T DO E.g. (lower right) image patches show windows from different vehicles - parts of objects
H1 ) which do not undergo much change when encountering nuisance factors like change in
< P> ug ] R |‘> 1 Psuedo) texture, shape and context of the vehicles.
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JRCN _':F s . lllustration of the key principle of adaptation-by-components (alludes to recognition-by-components
ackbone s L . 3 _ _ : :
i, . Y Yy theory) underlying our Bayesian approach. We show that clusters of feature vectors learned in an unsupervised Table 1. OOD-CV Nuisances Top-1 Classification Results. Occlusion levels greater than 0% represent Occluded-OOD-CV dataset.
éﬂi?rist::: = A, manner often resemble part(component)-like patterns. We observe that some feature clusters (represented
Ve - here on a von Mises-Fisher(vMF) manifold) are very similar in both 11D and OOD data (illustrated in blue and red ~ Methed Combined Context Vonther
k J , | | | | | Occlusion— 0% 20-40% 40-60% 60-80% 0% 20-40% 40-60% 60-80% | 0% 20-40% 40-60% 60-80%
- Finetuned boxes), whereas for other feature clusters there is no corresponding equivalent in the other domain. Our — ,
Transitional | _ _ _ _ _ _ _ CDAN [25]"" 760 .531 420  .380 |.710 .541 436 397 |.745 476 335  .299
vMF Kernels = Bayesian approach exploits this property by first learning a generative model of feature clusters and their spatial ~ ggp 127 753 506 401 351 | 610 511 419 385 | 730 391 266 254
|’ scores combinations on the IID data and subsequently adapting the model to OOD data via an unsupervised MDD [43]" 780 .551 469 410 |.761 531 436 410 |.802 439 306 271
L . - . - . . MCD [31]"" 772 556 461 403 |.798 523 426 374 |.810 447 336  .286
— ] P Sy adaptation of the vMF cluster dictionary, while retaining the spatial relations between clusters. MCC [15]" 785 582 492 434 |730 577 454 420 | 767 503 376 362
| FixBi [27]" 821 534 478 399 |.802 .542 445 409 |.755 489 358  .335
i : : : C o : : MIC [13]" 837 540 376 262 |.755 .602 532 499 |.817 .612 496 427
We learn a generative model of image features using vMF distribution mixtures and find ToAlign [40]* 761 507 411 346 |.712 501 393 382 |.720 381 252 213
> . ADCNN backbone is used to extract the source (IID) F¢ and target (OOD) features FZ. The parts (representations) of objects in the images which don’t change across domain changes. CST[23]" 840 .579 539 477 |.687 491 452 411 |.813 558 397  .356
S —_ . : DUA [26]"" 699 523 480 403 |.667 471 434 401 |.701 465 391 210
source feature vectors F°are then used to learn the sourc;g vVMF kernels that are then adapted to the Utilizing these robust parts, we adapt to an unlabelled domain in an Expectation- DINE[[2;]** 235 €00 403 a3 | g1 515 418 207 | 708 423 00 oe1
transitional VMF kernels using target domain features I~ and the adaptation coefficients y in an Maximization manner. This technique alludes to the cognitive science concepts of Analysis- 'RPL[30] ~ 664 430 346 300 |.675 457 368 315 [.642 247 138 122
unsupervised manner. — Transitional Spatial coefficients (A~*) are then learned using the transitional bv-Combonents ‘BNA[32] 653 426 343 298 |.580 .397 342 278 |.635 295 .179  .171
vMF likelihood L% i.e. non-linear activation applied to a convolution of F° and transitional kernels y P ' CompNet [21] 720 506 462 415 |.790 517 454 369 |.683 434 398  .362
using source labels. — These spatial coefficients are then finetuned (A@) using pseudo-scores {S} VOl Owrs) o9 S 570 S01 | 875 6% 565 >11 [.856 600 -S28 465
generated using the transitional mixture likelihood £~ of target domain features /. —shows the  \Wa can do this for Unsupervised 3D Pose Estimation too! Check out our ICLR 2024 work here.
final feedforward pipeline during inference. e
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